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Based on flow theory, we provide the basis of the geometric structure of in- 
homogeneous materials, including phase transitions, and we suggest methods of 
calculating the conductivity of these systems. 

i. Geometry of Clusters and Conductivity of Inhomogeneous Media. Problems related 
to flow theory were first formulated by Broadbent and Hammersley [I], based on which was 
created the mathematical discipline called flow theory. It has been widely used in various 
areas of physics, particularly in investigating the conductivity of inhomogeneous media. 
The flow problem and its application in the study of conductivity of inhomogeneous media 
are available in a substantial number of reviews [2-9]; therefore, in the present study we 
mostly consider problems related to the geometric interpretation of percolation effects in 
transport processes. 

Imagine that in Fig. la the whole planar space is filled with isolating particles (white 
particles), later randomly impregnated by conductors (black particles). As shown by computer 
Monte Carlo calculations, at low concentrations m M (M denotes the metal) of the conducting 
component the conducting regions are manifested singly or in the form of clusters (Fig. ib, 
c), forming isolated clusters (IC) in this case. When the concentration increases and be- 
comes equal to a critical mc, an infinite cluster (IFC) is generated in the system, ex- 
tending over all space, and the system becomes conducting; in Fig. ic the dashed lines mark 
the flow paths through the IFC. For increasing m M > m c the infinite cluster is enhanced, 
absorbing less clusters, and the conducting chains penetrate the whole system, forming a 
structure with mutually penetrating components. With further increase in m M the isolating 
IFC disappears, while for m M = 1 the whole space is filled by the conductor (Fig. le). The 
value m M = m c is the so-called flow threshold, or the percolation threshold. In [2-4, 7] 
and in other studies it was shown that the existence of a percolation threshold is a general 
effect, inherent in both systems without a regular structure and in lattice models. Assum- 
ing that the conductivity of the isolating structure A equals 0, for m~ < mc the conductivity 
of the whole system must also be 0. At the threshold concentration value m M = m c the system 
conductivity A undergoes a jump from zero to a finite value. The following expression is 

a b c 

Fig. i. Model of a binary inhomogenous body: a) m M = 0; b) 
m M < mc; c) m M = mc; d) m M > mc; e) m M = I. 
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assumed within flow theory for the effective conductivity of the spatial two-component ex- 
tremely inhomogeneous (Ai/A M = 0) system for m M > m c near the percolation threshold [3, i0]: 

A 
-- A(m~1--m~) k, m~ = 0.15 ! 0.03; k = 1.8 -+- 0,2. (I) 

Am 
The values of A are less definite, and vary within the literature sources within the limits 
A= 1-1.6. 

The theoretical results were generalized in [11, 12] to the cases Ai/A M ~ 0 and 0 <_ 
m M ~ i. The following dependences were recommended for the three concentration regions at 
Ai/A M = 5.10-4: 

A 
-- (1--StnM) -~ for mM<tn~; (2 )  

Ai 

A 
-- 1.6(m __m~)l.6 for m ~ m ~ < 0 . 5 .  (3 )  

A i 

I f  m M > 0 . 5 ,  i t  i s  recommended tO d e t e r m i n e  A f rom t h e  f o l l o w i n g  e q u a t i o n ,  o b t a i n e d  f o r  an 
effective medium: 

,% _ 1 ((3m M_l)_}_(3m i - 1 ) v ) +  
~%, 4 (4) 

V " -t- T § ((3m M - -  1) -t- (3m, i -  1) v) 2 , 

where V = Ai/A M- 

If 3"10 -2 ~ v < i, then Eq. (4) is recommended in the whole concentration region. Expres- 
sion (4) was first obtained by Von Bruggemann in 1935 [13], then multiply rederived [14, 
15], and is known in the literature as the Kondorskii-Odelevskii equation [16]. 

The diversity of equations, the formal nature of deriving them, and the absence of geo- 
metrically clear models provided incentives for searching new methods of solving the problem 
of effective conductivity. This conclusion is drawn by critical analysis of the equations 
describing the conductivity of sharply fixed structures of heterogeneous media (closed inclu- 
sions, mutually penetrable components), since they do not include the possibility of transi- 
tion of one structure into another with a change in concentration, the appearance of jump 
conductivity at m M = m c for extremely inhomogeneous media, and the statistical nature of 
component distribution in several systems. 

Dul'nev and Novikov have suggested a method of constructing a flow theory and the reduc- 
tion to an elementary unit cell [17]. In constructing the model they started from the estab- 
lished fact that for Ai/A M = 0 the dependence A = f(m M) obeys the law (i). In this case, 
the concentration m C of the conducting component, associated with the IFC, must obey the 
obvious conditions: m C = 0 when the clusters are isolated, i.e., for values m M < mc; and 
M C = i for total filling of the object by the conducting component. These conditions are 
satisfied by the dependence m C = (m M - mc)/(l - mc), m M ~ m c. 

We note that the IFC concentration is measured here not from 0, but from the value of 
mc, i.e., from the moment of IFC formation. 

Assuming in expression (i) A = (I - mc )-1~s, we represent the equation for A for extreme- 
ly inhomogeneous systems (Ai/AM = 0) in the form 

A = A ~ ( ~  tn~--m~l_mr )1.6, m ~ . m ~ l . .  (5 )  

Equation (5) is definitely an approximation, but describes quite well the theoretical and 
experimental data (the error is less than 2% for k = 1.6). 

A geometric model was constructed in [17, 18] of isolated and infinite clusters, reflect- 
ing the complex variation dynamics of the structure of an inhomogeneous system with the concen- 
tration of one of the components increasing from 0 to i. For this purpose, heterogeneous 
systems of macroscopic cubes of edge L were separated in the volume, and the following restric- 
tions were applied: 
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Fig. 2. Infinite cluster model. 
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Fig.  3. Inhomogeneous system model: a) general shape of i n f i n i t e  
c l u s t e r ;  b) system wi th  mutual ly  penetrable components; c) sys- 
tem wi th  i so la ted  inc lus ions .  

L is the minimum distance for which the cube conductivity equals the effective conduc- 
tivity A of the inhomogeneous system; in different words, the isolated element is representa- 

tive; 

the inhomogeneity sizes exceed the mean free path of the flux carriers (charge, energy, 
momentum, mass); 

the cube resistance to the current <]> flowing along the normal to one of the sides 
equals R = L/(AS), S = L 2. 

The resistance RIF C of the conducting IFC is, by definition, proportional to the mean 
length LIF C of the current line, and is inversely proportional to the conductivity A M of 
the infinite cluster and its averaged area of the transverse cross section SIF C (Fig. 2), 

i.e., RIF C = LiFC/(AMSIFC ). If Ai/A M = 0, the resistances of the cube R and of IFC are equal, 

R = RIF C and 

A = A~S~, S~ - -  S i F c t  (6) 
SLIFc 

Comparing (5) and (6), we obtain the variation law of the effective transverse cross section 
S I of the conducting IFC: 

i 
~)1.6 S~ --  ram-- n~e ( 7 )  

]__me 
in which both the complex IFC topology and the p r o b a b i l i s t i c  nature of i t s  format ion were 
taken in to  account. 

We represent the IFC geometric shape in a cube of size L in the form illustrated in 
Fig. 3a. Here the ICs are modeled by separate cubic inclusions (of size s with concentra- 
tion m M' = (s 3 The ICs are located at distances s = L - s from each other, and are 
joined by conducting couplers, whose transverse cross sections are s 2. 

The geometric structure of the model of an inhomogeneous binary structure varies in 
this representation with increasing concentration mM: at low concentrations m M = m M' < m c 
there exist closed inclusions (IC) in the system, and with increasing m M' they reach the 
limiting size ~2max = L ~ (Fig. 3c). The first bridges between IC start appearing later 
on, with their transverse cross-section area and length being s 2 and (L - s Further 
increase in the concentration m M leads to an enhanced transverse cross-section area Z 2 of 
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the bridge until the ~l and ~2 values are comparable, and the heterogeneous systems trans- 
form into a structure with mutually penetrating components (Fig. 3b). It is noted that all 
the complexity of the IFC geometry (its branching, nonuniformity of cross section, presence 
of internal voids, etc.) and the probabilistic nature of its formation process are concen- 
trated in the present model in the effective transverse cross-section area and are represented 
by expression (7). 

The mathematical model of the carrier transport process through the described structure 
of a binary mixture can be obtained by using the method of Rayleigh cross sections, whose 
justification and possible limitations are discussed in [19]. In this approach one uses 
the subdivision of an elementary unit cell by infinitely thin planes impenetrable to the 
flow (adiabatic subdivision). The more accurate method of combined subdivision is not given 
here only due to its awkwardness, but no major difficulties arise in this case. The equa- 
tion for the effective conductivity of the heterogeneous system is 

A --S~+v + +S~ (8) 
AM l--(l--v)~ l--(l--v)~ ' 

where 

AS = S~ - -  S1, 12 ---- m,~/3, if $2 ~> S1, 

s i  = ~,~, N~ =-TL N~ = (~ - 4)  l~, s ,  = 1 - 3 ~ -  2 ~ ,  

l~=( r n M  _ t n  ~ ,~o.8 
, ~ = Ai/A~r 

l--m~ ] 

The dependence (8) takes into account the variation of the heterogeneous system structure 
for the concentration m M increasing from 0 to i: 

for m M = m M' < m c there exist only closed inclusions (IC) in the structure; 

for m c ~ m M ~ 0.5, conducting bridges are generated between IC; their transverse cross- 
section area increases, and for m M = 0.5 a structure occurs with mutually penetrating com- 
ponents; 

for 0.5 ~ m M ~ i, there is a uniform growth in component M, having a structure with 
mutually penetrating components. If it is also necessary to take into account the variation 
in IFC and IC geometries of the insulating components, in this case, following the generation 
of a structure with mutually penetrating components it is necessary to carry out an inversion 
of expression (8), i.e., the subscript M is replaced by i. 

In the following we carry out a correction of the flow theory method as applied to an 
elementary unit cell, and a refinement of the equations of [20]. In this case the calcula- 
tion accuracy is not increased substantially, while the calculations become more awkward. 
In practice, therefore, to determine the effective conductivity of an inhomogeneous system 
with a random component distribution, Eq. (8) is used most often. 

2. Computer and Geometric Methods of Determining the Flow Threshold. Several methods 
are used to determine m c. One of the main methods is a computer calculation, when m c is 
determined by a computer Monte Carlo calculation [21-23]. To find it, there also exists 
the Domb and Sykes series method [24]. Sykes and Essam also suggested a method of calculating 
m c, based on analyzing the coefficients of these series for various lattices. For several 
planar lattices these authors succeeded in obtaining exact results [25, 26]. In treating 
continuum problems the authors of [i0, 12] showed by computer methods that, in the three-dimen- 
sional case, the flow threshold equals m c = 0.15 • 0.03. 

Another, less-well-known, method of finding m c is the geometric method. The authors 
of [27] first determined mc, starting from the assumption that to generate in a binary system 
with m M = m i = 0.5 a structure with mutually penetrating components (Fig. 3b) the maximum 
length of the cube edge s of an isolated[nclusion (Fig. 3c) must equal s = 0.5 L, whence 
one obtains m c = (s 3 = 0.125. In [28, 29] Dul'nev and Malarev determined by the geometric 
method the critical fluid concentrations (critical moisture contents) in humid disperse materi- 
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Fig. 4. Granular systems consisting of a conductor and insu- 
lator with particle diameters D and d (i, conductor; 2, insula- 
tor): a) particles of the same size z = d/D = !; b) z < !; c) 
Z > i. 

als for various wetting angles. The results obtained are in good agreement with the results 
of flow theory. This subject is discussed in more detail in Sec. 4. 

3. Polydisperse Materials. It was noted in [30, 31] that in a system consisting of 
large-scale conducting particles (diameter D) and small-scale isolating particles (diameter 
d), i.e., for z = d/D < i, the decrease in conductivity in comparison with a system consist- 
ing of particles of the same size occurs due to the decrease in transverse cross-section 
area between conducting particles and the increase in curvature of current lines. It is 
further noted that if the isolating particles are larger (z > I) they are "wedged in" between 
conducting grains at a lower depth (in comparison with particles of the same size), which 
enhances the minimumand effective transverse cross section of the conducting component par- 
ticle chain and decreases the curvature of the current lines, thus reducing the medium re- 
sistance. In these studies it was experimentally found that the relation between conducting 
and insulating particle sizes affects the critical conducting concentration at which the 
system conductivity changes jumpwise. Consider conductivity processes through similar granu- 
lar systems. The conduction analysis starts from a granular system (Fig. 4a) consisting 
of conducting and insulating particles of the same size (z = i). In this system the conduct- 
ing phase IFC can be formed both prior to compression, if the initial conducting concentra- 
tion is mM ~ = 0.15 (M is the conducting metal, i is the insulator, and p is the pore), and 
during the compression process. In this case the initial conducting concentration is in 
the interval 

B < m O ~ 0 . 1 5 ,  (9) 

where B is some boundary value of the conducting concentration, for which an IFC can still 
be formed. It can be shown that this occurs during compression up to the nonporous state 
(mp = 0); therefore, mM ~ = (0.15/0.85)mi ~ and, consequently, B = (3/17)mi ~ If mM ~ < B, 
an IFC is not formed in the system at all for any value of finite porosity. 

Based on the discussion above, we determine the critical value of conducting concentra- 
tion Xc, which can be defined as the ratio of conducting volume V M to the sum of conducting 
V M and insulating V i objects if an IFC is formed in the system: 

v .  ~ v ~ ~ 
: - -  = - ( l O )  

0 ' + v, + v o -  l - r a p  

where V ~ is the volume of the whole system prior to compression. 

It is seen that the value of x c depends on the initial porosity, and can vary from 0.15, 
if mM ~ = (3/17)mi ~ to 1 for mi ~ = 0. 

Consider now a system of large-scale conducting particles and small-scale insulating 
particles (Fig. 4b). It can be shown that the given case (z < I) is similar to the preceding 
one, since in both cases the conducting particles are immersed in a quasihomogeneous medium, 
consisting of a mixture of insulating and porous space particles. In this case, the relation 
between sizes of insulating and conducting particles (i.e., the parameter z) does not affect 
the critical value of the conducting concentration x c. The quantity x c can be determined 
both from Eq. (i0) and by means of the following expression: 

0.15 x~ - - -  , ( i l )  

1 - -  mp 
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where mpimplies the porosity value of the system, for which an IFC is formed during the com- 
pression process. 

It was noted in [30, 31] that since the samples consisted of particles of different 
dispersivity, whose activities are not identical, then sample condensation also occurred with 
different intensity, and the samples prepared were characterized by different porosities; 
the sample porosity varied from 0.05 to 30%, depending on the technological regime. From 
(ii) we obtain that for these mp values x c varies within the limits 0.15-0.21. 

Consider the third case z m i, i.e., the large-scale insulating particles are immersed 
in a quasihomogeneous medium, consisting of small-scale conducting particles and pores (Fig. 
4c). The flow in this system starts when the volume of the conducting low-dispersion phase 
is 0.15 of the volume V - Vi: 

mM --  0.15 (1 - -  mi) = 0,15 (m,~ + m~. (12)  

E x p r e s s i n g  mbl i n  (12)  i n  t e r m s  o f  mp, w i t h  a c c o u n t  o f  ( 1 1 )  we o b t a i n  x c = 3 / 1 7 [ m p / ( 1  - mp) ] .  
As in the case z ~ i, it is seen that x c depends on the porosity value at which an IFC is 
formed. At m~ = 0.3 we obtain x c = 0.08. It was noted in [3] that for z = 0.006, x c is 
of the order ~f 0.i. The relations given are valid for z m i, while expressions for x c are 
obtained for any z > i. 

A model was constructed in [32], reflecting the random character of the arrangement 
of isolated components in the volume of a two-component system with chaotic structure. In 
this case the transport process was not investigated over the whole volume of the chaotic 
system, but in a small portion of width h, commensurate with the mean distance between parti- 
cle centers. It was shown in that study that the equation for the mean statistical distance 
<s between centers of conducting particles with characteristic particle size D is, depend- 
ing on the concentration, 

</) = kfDm~ I/3, (13) 

where for spherical particles kf = 0.806. 

The maximum diameter of insulating particle do can be determined by placing it in the 
segment between conducting particles without destroying the structure of their arrangement 
(Fig. 5). The following expression is valid in this case: 

D + do _ -1/ 3 
" 2 2 ( / > '  (14) 

from which, using (13), we obtain 

= D(~3kfmE ~'3- 1). (15) 
If instead of particles of diameter d o one now places in the elementary unit cell an in- 
sulating particle with diameter d > do, the volume of the conducting phase VM* in the unit 
cell is diminished from the initial V M by the value ~/6(d 3 - d03)mM , i.e., 

v :  = v , ~ -  ~ (d~ - d~). ~-m. 
We t r a n s f o r m  (16)  w i t h  a c c o u n t  o f  t h e  f a c t  t h a t  V i = ( ~ / 6 ) d 3 :  

o r  

V*~ = VM--mMV i 1 - -  

( 1 6 )  

(17) 

m * = t n M ( l _ m i  1 _  ( ~ ) 3 ) )  . (18)  

We assume that an IFC (m M = 0.15) has existed in the system prior to mixing. As a result 
of mixing the conducting low-dispersion phase with the high-dispersion phase of the insulator 
we obtain 

m* ---- 0-15 (1 - -m•  (1 - -  ( ~ ) 3 ) )  �9 (19) 
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Fig. 5. 

dcon  
T 

/ 

din'~ 

Definition of the diameter d o . 

With account of (15), Eq. (19) acquires the form 

mM = 0 . 1 5  l - - r e ,  i 1 z 3 . 

I t  i s  s e e n  t h a t  (20)  t r a n s f o r m s  t o  (12)  f o r  z ~ ~,  and t h e  mN* v a l u e  f o r  z = 1 .627 ( i . e . ,  
o f  t h e  o r d e r  o f  1) e q u a l s  m c = 0 . 1 5 ,  and s t a r t s  d e c r e a s i n g  w i t h  i n c r e a s i n g  z .  

E q u a t i o n  (20)  can be w r i t t e n  somewhat d i f f e r e n t l y ,  u s i n g  t h e  f a c t  t h a t  m i ; 1 - mM* - 
mp : 

m :  = Za 
o.646 (21) 

0.85 + - -  
Z 3 

Starting from this point, the equation for x c is: 

O. 1 5 ( 1 - - ( 1 - - m p ) ( 1  4.307z 3 

xc = (22)  
( 0,646 ) 

(1 --/Up) 0,85 ~- --77-- 

The a u t h o r s  o f  [30,  31] have  d e r i v e d  t h e  f o l l o w i n g  e x p r e s s i o n s  f o r  d e t e r m i n i n g  Xc: 

xc = 0,32 arctg (0.55z-~ t), ( 2 3 )  

xc = 0,16 -k 0,026 lg (l/z). 

These equations are approximate, are valid in a restricted range of variation in z, they 
do not satisfy the limiting transitions, and do not reflect the dependence of x c on the system 
porosity. Therefore, for practical calculations it is recommended to use Eqs. (i0) and (22). 

Thus, in this section we have analyzed the effect of system dispersion on the critical 
concentration of the conducting phase x c in the whole variation region of z, and have shown 
the dependence of this concentration on the system porosity. 

4. Humid Materials. In investigating the thermal conductivity of humid porous materi- 
als one often uses modeling methods taking into account both the material structure and the 
occurrence of heat and mass transfer processes in it [33-37]. 

It was shown experimentally in [38] that the thermal conductivity of a humid material 
must depend substantially on the moisture distribution over the volume. The characteristic of 
surface wetting is usually the boundary wetting angle, formed on the boundary of a solid, 
fluid, or gas. The thermal conductivity of one and the same material with the same moisture 
content can differ by some factor, depending on the nature of moisture distribution in the 
material. 
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The authors of [28] suggested a model of humid, porous material, taking into account 
the effect of the nature of moisture distribution on transport processes. The model basical- 
ly includes mutually penetrable components, containing a solid skeleton i, a vapor-gas mix- 
ture 3, and moisture 2 (Fig. 6). At low moisture contents the fluid is distributed in the 
form of separated, isolated inclusions or isolated clusters (Fig. 6a), which increasingly 
grow at some critical value of solute moisture content m = m' into one infinite cluster (Fig. 
6b). With further increase in moisture content the fluid occupies a large fraction of porous 
space (Fig. 6c), while for value ~ = ~" the infinite cluster disappears from the mixture, 
and the vapor is now distributed in porous space in the form of isolated inclusions (Fig. 6d). 

The effective thermal conductivity of this model was calculated on the basis of reducing 
these methods to an elementary unit cell with the use of flow theory (see Sec. i). In this 
case, the analysis of heat and mass transfer processes in the three-component system was 
carried out by successively reducing it to a binary system [19]. For this one determines 
at the first phase the effective thermal conductivity of porous space, containing the fluid 
and the gas-vapor mixture; and at the second phase - the effective thermal conductivity of 
the whole material. 

We represent the porous space, containing the fluid and the gas-vapor mixture, as a 
binary system of mutually penetrable components. For various values of moisture content 
the elementary unit cells of this system are represented in Fig. 3. It was noted above that 
for low moisture contents (m < m') the fluid is concentrated in an isolated cluster (IC) 
in a cube of edge s (Fig. 3c), its concentration is ~ = (s 3, and the ICs themselves 
are located at distance s = L - s from each other. For moisture contents m e m' the ICs 
are combined by conducting bonds, whose transverse cross sections are S I = s 2 (Fig. 3a). 
In this case, according to flow theory, there exists a limiting value of the moisture content 

< ~', for which S I = O, while for ~ = ~' the first bridges are formed by a "jump," i.e., 
the isolated clusters are combined and transform to an infinite cluster (IFC). Further in- 
crease in ~ leads to increasing the area of the transverse cross section s 2 of the bridge 
until the s and s values are equal, and the heterogeneous system transforms to a structure 
with mutually penetrable components (Fig. 3b). With further increase in m the transverse 
cross-section area (L 2 - s 2 ) of bridges of the gas-vapor component starts decreasing, and 
for fluid concentration m = m" the IFC mixture of gas and vapor disappears. By purely geo- 
metric constructions it was shown in [28] that the values of ~' and i - ~" are approximately 
equal to 0.16 in the middle of the porosity interval when the wetting angle ~ equals O. This 
conclusion is in good agreement with results of flow theory, starting from which the thresh- 
old flow is approximately equal to 0.15 for a two-component system in three-dimensional space. 

The calculation of the effective thermal conductivity 112 of an inhomogeneous binary 
system, consisting of a gas-vapor mixture 2 and a fluid i with thermal conductivities 12 and 
11 , can be carried out by Eq. (8), in which one must take: 

1 Z 1 Z 
o /  

7 

a b 

~" 1 2. 3 .1 Z 3 

' t  

Fig. 6. Model of humid porous materials: a) m < m'; b) m' 
~ m*; c) ~* ~ ~ ~ m"; d) m" ~ ~ (i, solid phase; 2, fluid; 

3, gas-vapor). 
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(24) 

")~ = I~0', o ~ c o * ,  (25) 
I c,)", o) > o*; 

3 f - -  
-/-~ = v toe, ~ = kill1, 

w h e r e  ~'~ i s  t h e  m o i s t u r e  c o n t e n t  a t  w h i c h  t h e  f l u i d ,  a l o n g  w i t h  t h e  s h e l l  and  t h e  v a p o r - a i r  
m i x t u r e ,  f o r m  i n  p o r e  s p a c e  a s t r u c t u r e  w i t h  m u t u a l l y  p e n e t r a b l e  c o m p o n e n t s ,  i n  w h i c h  c a s e  
x = a m ( F i g .  6 b ) .  

At  t h e  s e c o n d  p h a s e  o f  t h e  c a l c u l a t i o n  one  d e t e r m i n e s  by w e l l - k n o w n  e q u a t i o n s  [18 ,  19] 
t h e  e f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  ~ o f  a humid  m a t e r i a l ,  w h i c h  c a n  be  r e p r e s e n t e d  i n  t h e  
f o r m  o f  a s t r u c t u r e  w i t h  m u t u a l l y  p e n e t r a b l e  c o m p o n e n t s  o f  a s o l i d  s k e l e t o n  i = 3 and  p o r o u s  
s p a c e  i = 1,  2 ( F i g .  3 b ) .  The  e f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  o f  a b i n a r y  s y s t e m  w i t h  m u t u a l -  
l y  p e n e t r a b l e  c o m p o n e n t s  c a n  be  d e t e r m i n e d  f r o m  t h e  e q u a t i o n  

-- c z + v (1 c) z _i_ 2v (1 - -  c) c ~iz - -  , v  = - - .  ( 2 6 )  
~3 1 - - c  + vc X~ 

The p a r a m e t e r  c = s  i s  d e t e r m i n e d  by  s o l v i n g  t h e  c u b i c  e q u a t i o n  

m = 2c3- -  3c2 q - 1, ( 2 7 )  

where m is the material porosity. 

Consider the effect of the wetting angle between a fluid and a solid shell on the thresh- 

old values of the moisture content in humid porous materials. Figure 7 shows one eighth 
of the elementary unit cell of a structure with mutually penetrable components for the critical 
values of moisture content m = ~' and e = w " for the wetting angles % = O, 45, and 90 ~ . 
The value of the moisture content is related, by definition, to the voluems of the fluid 
Vf and the pore V- by the dependence ~ = Vf/Vp. We find the m' value for one of the cases, 
for example 0 = 4~ ~ It follows from Fig. 7c that Vf = 3V I + Vi, V I = 0.5A(L - A) 2, V 2 = 
(L - A)3/6. Consequently, for the case considered the critical value of the moisture content 
w' equals: 

+ (L - -  A)~ + --~ (L - -  A)Z A 
( o ' =  _ 1 1 + 8 c  ( 2 8 )  

(L - -  A)~(L + 2A) 6 1 + 2c 

The values of ~' and m'~ can be obtained similarly for other wetting angles. 

The dependence of ~' on the wetting angle % can be approximated by a quadratic polynomial: 

Table 1 shows the values of 

mdir- 

O' = a o + a l ~  -~- a292. ( 2 9 )  

ao, a i ,  and a2 for various values of the direct porosity 

TABLE i. Values of the Quantities 

of Direct Porosity mdi r 
a0, el, and a= as a Function 

mdir I 0,1 0,2 0,3 0,4 0,5 0,6 

a o [ 0,201 O, 193 O, 186 O, 178 O, 170 O, 160 

al 5,48-10-z I 5,68.10 -3 5,40.10 -3 5,13.1o-3 I 4,87.i0 -3 4,56.10 -8 

a2 ] 1'36"10-5 I 6'17"10-6 8'89"10-6 1'1410-~ [ 1'38'10-5 1'68"10-5 
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Fig. 7. The nature of fluid distribution in a shell-pore space 
structure for critical values of moisture content and various 
wetting angles: a) m' = 0.16, % = 0~ b) m" = 0.85, ~ = 0~ c) 
w' = 0.41, % = 45~ d) m" = 0.96, ~ = 45~ e) ~' = 0.75, % = 
90~ f) ~" = 0.99, ~ = 90 ~ 

/ 7  / g 

Fig. 8. Fluid distribution in the porous space of a grainy sys- 
tem (i, solid particles; 2, fluid disseminations); the fluid 
wets the particle surface: a) well; b) poorly. 

If, following saturation by the fluid porous material up to moisture content m', we 
start removing randomly portions of the fluid of the elementary unit cells, the fluid IFC 
disappears when only approximately 15% of all elementary unit cells remain humid. The con- 
centration of the fluid component in a porous body equals in this case: 

xc = 0.150/mcKB. (30)  

The a p p r o a c h  g i v e n  o f  d e t e r m i n i n g  t h e  c o n c e n t r a t i o n  o f  t h e  f l u i d  componen t  x c can  be 
used, for example, to find the allowed silicon concentration in porous baked carbide-silicon 
ovens. In passing an electric current through them, their temperature can exceed the melting 
temperature of silicon, as a result of which it flows into the porous space over the internal 
surface of the baked shell. Since the electric conductivity of silicon is substantially 
higher than the electric conductivity of the carbide-silicon shell, a silicon fluid phase 
IFC is generated in the system at a silicon concentration higher than Xc, and the oven resis- 
tance drops sharply, as a result of which it becomes disordered. 

Based on analyzing the nature of the fluid distribution in porous space, the authors 
of [29] suggested a model and a method of calculating the effective thermal conductivity 
of humidity grainy materials. The effect has been shown of the nature of the 
fluid distribution in the structure of the grainy material on the value of the effective 
thermal conductivity. When the fluid wets the shell and forms aqueous bridges in the contact 
locations (Fig. 8a), the thermal conductivity of the whole system increases sharply due to 
the decrease in contact resistance between grains. If the fluid does not wet the particle 
surface, it is distributed by separate disseminations of noncontacting drops (Fig. 8b), as 
a result of which the effective thermal conductivity of the grainy system increases with in- 
creasing moisture content substantially more slowly, since the dry shell of grains seems to 
have an insulating effect. 
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Fig. 9. Temperature dependence of the electric resist- 
ance in V02: i) experimental values, measured for in- 
creasing temperature; 2) same for decreasing tempera- 
ture [39]. Solid lines) calculated values for 0.12 
m c ~ 0.18. R, ~; T, ~ 

The method of calculating the effective thermal conductivity of humid grainy systems 
is based on the assumption that a shell of particles can be isolated in the system and be 
found in contact locations of moist particles (when the fluid wets the grain surfaces). The 
remaining portion of porous space, which can in turn be either a single-phase or two-phase 
system, can be considered in the set with a separate shell as a structure with mutually pene- 
trable components. The effective thermal conductivity of this model was calculated by using 
a method of reduction to an averaged element of the grainy system with account of wetting 
by fluid particles. 

5. Conductivity for Structural Phase Transitions. Materials are known whose conductiv- 
ity varies due to the structural phase transition in materials [39, 40]. For example, a 
substantial conductivity variation in a relatively narrow temperature interval occurs in 
vanadium oxide VO 2 (a metal-semiconductor phase transition), in titanium-barium based ceram- 
ic BaTiO 3 (a ferroelectric-paraelectric transition), and in partially crystalline polymers 
(for example, polyethylenes, polypropylenes) [42]. The structural phase transition occurs 
in the relatively narrow temperature range AT = T i - Tf, where T i and Tf are the initial 
and final phase transition temperatures. At temperatures T < T i there exists a structurally 
uniform phase, characterized by the conductivity A I (electric conductivity Ol, thermal con- 
ductivity 11 ) and temperature coefficient al. Above T > Tf a different structurally uniform 
phase is generated with parameters A 2 and a2. According to the theory of heterogeneous trans- 
formations, the generation of the new phase in the original matrix occurs due to nucleus forma- 
tion and the growth of a new phase [41]. The conductivity of this type of structures can 
be described by the dependences (8), taking into account percolation effects. In this case, 
it is necessary to relate the concentration m i of phase i with temperature m i = mi(T). Com- 
bining these equations makes it possible to obtain the temperature dependence A = A(Ai, T) 
of the conductivity under conditions of a structural phase transition. It can be shown that 
the process of nucleus formation is related to the existence of heterophase fluctuations, 
and their concentration is proportional to the internal energy reserve of the solid. The 
temperature dependence of the new phase nucleus concentration is then acquired by the similar 
temperature dependence of the specific heat. Following nucleus formation, they grow due 
to fluctuations generated near the separation between the two phases, i.e., near the nucleus, 
and the latter process is characterized by the entropy value of the activation process [43]. 

We denote the bulk heat capacity by C v, the entropy variation during phase transition 
by AS, and the bulk concentration by m 2. Normalizing over the temperature region (Tf - Ti), 
the authors of [43] derive the equation 

C v - - c v i  A S - - A S  i 
m 2 = ( 3 1 )  

Cwf--C~i ~Sf--AS i" 
It is assumed in [43] that the relation between C v and temperature is determined by the 
Einstein-Nernst-Lindeman equation, and that the quantity AS is calculated from data on the 
transformation heat AH during phase transition: 

A H  = T A S .  ( 3 2 )  

Equations (8), (31), and (32) make it possible to obtain the required dependence A = 
A(T). For thermoresistors of vanadium oxide, operating at the metal-semiconductor phase 
transition, temperature dependence of electric resistivity R = A -I possesses, as seen from 
Fig. 9, a temperature hysteresis: at the same temperatures the bulk concentrations m I' and 
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Fig .  10. Model of  a p a r t i a l l y  c r y s t a l l i n e  polymer:  a) T = Tg; 
b) Tg < T < Tm; c) T _> m m. 

m2" of the metallic phase are different for increasing and decreasing temperature [39]. The 
occurrence of hysteresis follows formally from the structure of dependence (31). We write 
it down for the direct and inverse branches of the curve R = R(T), keeping in mind that for 
these branches the locations of the initial T i and final Tf temperature values and the quan- 
tities corresponding to them C v and AS change: 

m~= c.--c . i  AS--AS~ m~= c~--c~f AS--ASf.  
C~f---Cvi ASf-- AS i' cvi--c~f AS i- ASf (33) 

It follows from (33) that m 2' ~ m2" , and the dependence (33) is not invariant to the 
direction of the process, i.e., hysteresis is possible for structural phase transitions. 
The latter can also be generated by other processes, such as the percolation effect. Since 
m c = 0.15 -+ 0.03 = 0.12-0.18, smearing of the direct and inverse branches is possible and 
they can overlap, so that hysteresis is not manifested directly, as illustrated by the tem- 
perature dependence R = R(T) for a semiconducting ceramic on a titanium-barium base in the 
ferroelectric-paraelectric phase transition region [43]. 

Methods of calculating the thermal conductivity of partially crystalline polymers in 
the temperature interval from glass formation Tg to melting T m were considered in [42]. De- 
pending on the features of the polymerization process, the polymers obtained differ in the 
method of crystalline structure formation: the shape and mutual location of macromolecule 
segments form a crystalline lattice, while the chain branching and the regularity of its 
structure exclude this possibility as well as the intermediate case (partially crystalline 
polymers). Polymers of the latter type are commonly characterized by the extent of crystal- 
lization ~ , equal to the ratio of the number of crystallizing and noncrystallizing modifica- 
tions at t~e glass formation temperature (the original extent of crystallization). At tem- 
peratures exceeding Tg the crystalline portions melt, but the locations of macromolecular 
chains in them do not become totally disordered - the chain portions basically retain parallel 
stacking (Fig. i0). For Tg < T, there are crystalline formations ~and portions not posses- 
sing long-range order, but differing in density and nature of packing of macromolecular seg- 
ments from the noncrystalline modification - the quasiamorphic modification. Starting from 
glass formation, with increasing temperature all crystallizing modifications transform from 
crystalline to the quasiamorphic state, and the composite structure also contains other forma- 
tions. Thus, a partially crystalline polymer contains amorphous, quasiamorphous, and crystal- 
line components. Above the glass formation temperature we have melting of the crystalline 
portions; for high extent of crystallization (95%) the crystalline portions fuse and form 
the system shell; near the melting temperature crystalline formations exist in the form of 
closed inclusions in the matrix, consisting of amorphous and quasiamorphous modifications. 
During crystallization from the melt we have the same, but in reverse order: the appearance 
of isolated crystalline inclusions, generation of contacts between them, their growth, and, 
finally, formation of a continuous shell of crystalline portions. This structure is adequate- 
ly treated in Sec. 1 of the model, whose thermal conductivity can be described by Eqs. (8), 
where the conducting component has thermal conductivity ~c (crystalline portion), a bulk 
concentration m = ~v, equal to the bulk extent of crystallization, and the nonconducting 
is h a (amorphous and quasiamorphous portions). 
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The polymer as a whole is a conducting matrix with nonconducting inclusions. The bulk 
fraction of the l~tter mf increases during the process of phase transition, melting of the 
crystalline portions, and can be calculated in each temperature interval AT from the tempera- 
ture dependence of the decrystallization rate [42] 

mf = -~T--jariATi �9 

For  mf < 0 .15 ,  Eq. (8)  a c q u i r e s  t h e  form 

1/3- ) 
= %~I ( .lf -~- (l --m02/3 (34) 

: 1 - - ( 1 - - w )  m}/a 

For mf > 0.5, the thermal conductivity is calculated by Eq. (8), where m = 1 - mf. 

Thus, the calculation of % of a partially crystalline polymer is carried out in two 
steps: first one calculates the thermal conductivity A M of the matrix consisting of crystal- 
line and amorphous portions; second, one evaluates the whole polymer, i.e., the system con- 
sisting of the matrix and of portions undergoing a phase transition. 

The %c and %~ values required for the calculation can be evaluated in the presence of 
experimental data on the thermal conductivity of two polymer samples with different original 
extents of crystallization. In [42], for example, these dependences % = %(T, ~g) are evalu- 
ated for polyethylene at low and high density. 

By this method one can calculate the thermal conductivity of a partially crystalline 
polymer in the temperature interval from glass formation to melting. In this case, the de- 
viation between calculated thermal conductivity values and experimental values is commensu- 
rate with the experimental error, i.e., 8-10%o 

6. Mechanical Properties; Penetrability. The geometric IC and IFC forms, flow theory, 
and the generalized conductivity were used by V. V. Novikov to investigate mechanical proper- 
ties of inhomogeneous media. Particularly investigated were the thermal expansion coeffi- 
cient (TEC) of a polymer matrix, carbon fiber [44]; calculations have shown that the TEC 
of a fibrous structure is quite sensitive to variations in the elastic properties of the 
fiber; and variation of the latter by 30-50% leads to TEC variations of the composite by 
two to three times. 

The nature of the problem required transformation from vector to tensor analysis prob- 
lems; in other words, the dependence obtained for the conductivity of inhomogeneous media 
cannot be transferred to the elastic properties. It has been established that the analogy 
between elasticity and conductivity of a microscopically inhomogeneous material can be car- 
ried out only if one neglects the elastic interaction between components. This leads to 
a substantial error in determining the elastic properties of inhomogeneous materials. 

In particular, during IFC formation and for m I = m c = 0.15 no macroscopic rigidity can 
be generated in the system, this threshold equals mc* = 0.3-0.43, and the elastic moduli 
(the uniform compression modulus K and the shear modulus) are determined in the form K oo 
DP oo (m I - mc*)f , f = 3.6 • 0.6. 

The elastic moduli K, DP, and the TEC ~ were determined in [45] for percolation models, 
and their unusual behavior in comparison with conductivity was shown. The elastic proper- 
ties of powder materials, porous metals, and pseudoalloys were investigated in [46]. Similar 
structural models and calculation methods were described, with the analytic and experimental 
data found in satisfactory agreement. 

The percolation models also made it possible to describe the penetrability of porous 
media. The definition of the penetrability k follows from Darcy's law, relating the fluid 
flow V with viscosity and the pressure gradient grad P:V = -(k/D)gradP. The structure of 
this equation recalls the Fourier and Ohm laws, making it possible to use the thermoelectric 
analogy, while the description of the structure is carried out with account of IC and IFC 
formation; then the value k of porous materials can be obtained on the basis of dependences 
(8), since k = A can be assumed to be a generalized conductivity coefficient. Assuming the 
penetrability of the continuous solid shell to vanish, i.e., K 2 = 0, and the pore penetrabil- 
ity to be --kl, k = klc 2. Further analysis of this process is carried out in [47] and makes 
it possible to calculate the penetrability of solid and grainy porous systems with account 
of IFC formation, its winding, and other parameters. 
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NOTATION 

mM, mi, bulk concentrations of the conducting and insulating phases; mc, threshold con- 
centration value; L, size of the element shown; d, D, particle diameters of the insulator 
and conductor, in m; VM ~ Vi ~ Vp ~ VM, Vi, Vp, volumes of the conducting, insulating, and 
porous phases up to and following compression, in m3; Xc, critical concentration, referring 
to the sum of conducting and insulating volumes; kf, particle shape coefficient; <s sta- 
tistical mean distance between centers of conducting particles, in m; ~, moisture content; 
m', ~", critical values of the moisture content; %, wetting angle, deg; X, thermal conductiv- 
ity of the material, W/(m-K); T, temperature, K; AH, transformation heat during phase transi- 
tion, J/mole/ Cv, bulk specific heat capacity, J/(kg.K); ~g, extent of polymer crystalliza- 
tion; P, pressure, Pa; k, material penetrability, m 2. 
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